DRI #2354
i ' .

FINAL REPORT

DEVELOPMENT OF THE CIRCUIT DESIGN FROM THE LOGIC
DESIGN OF A RANDOM WALK MACHINE

NsG-518

Project DRI 622

September 1966

GPO PRICE s

CFSTI PRICE(S) §

Hard copy (HC) tz' 2

Microfiche (MF) ‘Q.L

# 653 July 65

.. ] UNIVERSITY OF DENVE&{
N66 39916 !
O 79740 70

(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

FACILITY FORM 802




FINAL REPORT

DEVELOPMENT OF THE CIRCUIT DESIGN FROM THE LOGIC
DESIGN OF A RANDOM WALK MACHINE

NsG-518

Project DRI 622

University of Denver

September 1966

SUBMITTED BY:

William D. Lansdown
Assistant Professor

Electrical Engineering



ii

ABSTRACT

Laplace's equation, important in physical sciences, is a diffi-
cult equation to solve for arbitrary boundaries and boundary conditions.
The author in his Ph.D. thesis describes the logic design of a small,
high speed, random walk machine to solve Laplace's equation.

To convert the logic diagrams to circuit diagrams, a commer-
cial circuit family is chosen to implement the logic. The basis of
choice of a circuit family is a figure of merit, f = C D, where C is the
initial cost of the logic units and D is the propagation delay through a
shift register bit, a frequently used element in the machine. The min-
imum value of f is the most desirable value. The circuit diagrams
were then developed from the logic diagrams on the basis of the circuit
family chosen.

A control procedure is outlined in consideration of the computer
the Department of Electrical Engineering expects to order shortly.
The computer is found to be fast enough to control the random walk
machine at the speed goals set for the random walk machine.

Estimated costs based upon the number and cost of the logic
units required is given. Proposals submitted and to be submitted are
discussed.

The appendix contains the circuit diagrams developed for the
Random Walk machine along with the original logic diagrams.
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1. INTRODUCTION

Laplace's equation, a well known and important equation in field
theory, is the solution to the potential within a charge-free region for
arbitrary boundary conditions. It describes also incompressible fluid
flow and the steady state temperature distribution in solids and numer-
ous other physical phenomena.

At present virtually the only practical methods of solution are
field plotting, which has been done for years past, and iterative solu-
tions of the analogous finite difference equation on digital computers.
Other methods are known, and among these are random walk or
Monte Carlo solutions, see Brown.' Solutions of this type have been
performed on punch card equipment, see Yowell'® and on digital com-
puters, see Todd. % However, these are uneconomical even with mod-
ern high speed machines, see Forsythe® and Lansdown.® Hirai, ®
Sugiya.ma.,8 and their coworkers at the Osaka City University have built
a random walk machine, which though slow has moderately high speed
capabilities.

Lansdown® in his Ph.D. thesis gives the logic diagrams of a
special purpose random walk machine which has a speed/cost factor of
approximately 1000 times that of the IBM 7090 computer. The machine
is to be controlled and have its output processed by a general purpose
computer which can be used on a time shared basis if the controlling
computer is sufficiently fast. This machine has speed capabilities be-
tween 10 and 20 times that of the machine of Hirai and Sugiyama
because of using flip-flop register memory and counters instead of
core memory. This type of design has further advantages in that the
extension to three dimensions should be much more economical than a
machine of the other type.

This project has had as its aim the carrying on of the develop-
ment of the random walk machine. The logic diagrams of the before
mentioned thesis have been transformed to circuit designs. The pro-
cedure for processing the data output of the random walk machine has
been outlined for the expected Department of Electrical Engineering
GE/PAC 4020 control computer. The control computer must process
the output at least as fast as it is generated. This latter was not done in
detail awaiting the actual order of the 4020 controller. Otherwise it
will be necessary to use the University B5500, though this will not be
as convenient due to the necessity of the B5500 being run by a regular
operator.



One proposal has been submitted to N.S. F., though it was re-
jected. Further proposals will be submitted to obtain support to
purchase components and support graduate students to complete the
random walk machine.



2.1 Choice of Circuit Family

Although the choice of circuit family and the transformation of
logic are closely related, they will be discussed separately. In the
summer of 1965 several families of commercial logic units were con-
sidered. Of these, two families had appreciably better performance
from other lines considered. These were the Fairchild CTpL-952
through 957 and the Motorola MC351 through 362.

Since the RW machine is largely made up of parallel, circular,
left and right shift registers, one bit of shift register was used for
comparison purposes. A figure of merit was devised which was:

f=CD

when
c = cost of 1 bit of shift register
d = total propagation delay

The circuit family with the lowe st figure of merit has the lowe st cost
per random step, the basic step of operation of the RW machine.
The following table gives the figures of merit:

Line of IL.ogic C D f
Motorola MC351 through 362 $13.77 22 303
Fairchild CTpL-952 through 957 $16. 07 13. 9 224

These figures differ from the figures given in the progress report of

1 April 1965 through 31 September 1965 due to a recalculation of the
costs and propagation delays. The Fairchild line has a better figure of
merit, though it has a higher cost per bit.

Factors that will influence these figures is the price decrease
as integrated circuit (IC) prices drop. Other factors that favor the
Fairchild line in this application is the smaller number of IC's
required: 2 1/3 Fairchild IC's per bit are required to 4 3/5 Motorola
IC's. This means fewer units and fewer connections which will be an
appreciable simplification. Also, manufacturers are developing sev-
eral bits of shift register all in one IC, and this may cause, also a
further decrease in price.



Thus the Fairchild CTul. 952-9587 line wa
circuit diagrams from the logic diagrams in the author's thesis.

chosen v develop the
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2.2 Transformation and Minimization

The logic diagram in the thesis were given in AND-OR-NOT
logic where the Fairchild CTuL lines uses AND-NOT logic. This is
sufficient in itself as the OR can be realized with AND's and NOT's.
However, the Fairchild line has also the OR function by tying outputs
together; this is called OR tying. Thus the replacement of AND-OR-
NOT with AND-NOT-OR tie is virtually a 1-1 replacement which sim-
plifies the transformation greatly.

The logic diagram were quite abbreviated in places, that is, a
counter was shown as a single block. The circuit diagrams included
here give the entire circuit (except that only 1 of the 28 identical mem-
ory rings are shown). This is particularly true not only in the case of
counters, but also multiple AND's and registers and even more so in
flip-flop memory.

Logic minimization programs were not listed in the B5500 pro-
gram library, nor in IBM's SHARE listing, even though it is known to
the writer that IBM has them for in-house use. Furthermore it did not
seem likely that there would be great savings of components, so this
was not considered further.

Should other families of logic become more economic at the
time of construction, it will be possible to make the transition rela-
tively easily. For example, AND's followed by OR's can be replaced
directly with NAND's followed by NAND's.




3. INNERFACE AND OUTPUT DATA PROCESSING PROCEDURE
FOR THE GE/PAC 4020 COMPUTER

The innerface between the RW machine and the GE/PAC 4020
will be nothing more than circuitry to change between the different
levels of the two machines, and this will be very simple. Since the
4020 is a process controller it has provision for voltage level inputs.

Since the 4020 has yet to be ordered (though it seems quite likely
that it will within 3 month's time), the output data processing procedure
was devised only in flow diagram form. Refer to Figure 3.1 which
shows an arbitrary boundary. The broken segments above AA are the
upper boundary and the segments below are the lower boundary. Each
of the lattice points intersected by segments representing the upper
boundary have unique x axis values for the non-vertical segments U2,
U3, and U5. For these points it is necessary only to add a constant to
the X counter value to give a unique memory word location for each
lattice point. To denote that the X value corresponds to a vertical seg-
ment, the memory word corresponding to that X value can contain a
negative value. Furthermore that negative value can now be subtracted
from the counter and an appropriate constant added to give a group of
cells, each correpsonding to each lattice intersection with the boundary.
This is shown in the flow diagram of Figure 3. 2.

The numbers at the upper left hand corner of the blocks in Fig-
ure 3.2 are estimates of the memory cycles required to perform the
block. The maximum number of cycles is 51 which requires 82us of
4020 time per random walk. The average number of cycles is 41 which
requires 66pus of 4020 time per random walk. The average time per
random walk is 378us. Thus 312 of the 378us are available for other
programs on a time shared basis. This shows that the GE/PAC 4020
is more than adequate as a controller for the RW machine.
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4. ESTIMATED COSTS

To make cost estimates on the finished machine, the cost of the
logic units was computed from the number of logic units used and the
prices for units purchased in the 100's of units. The breakdown is as
follows:

All but the flip-flop memories $ 2,720

2 flip-flop memories, each having
14 parallel, 32 bit circular shift

registers, each $7,190 14, 380
Subtotal $17,100
11% for safety factor 1, 900
Total $19, 000

In addition to account for power supplies, packaging, assembly
and construction with the aid of graduate assistants, add another $19, 000.
Estimated total cost of the RW machine is $38, 000.

This figure may be appreciably reduced if fast, multi-bit shift
registers become commercially available as is desirable. The savings
in a multi-bit IC might justify a lower operating speed since the shift
registers account for 84% of the logic circuit cost.



5. PRCPOSALS

One proposal has resulted from this project. A Research
Initiation Grant Proposal was submitted to the National Science Founda-
tion. The title was ""Construction of a Feasibility Model of a Random
Walk Machine.'" The model proposed was to be built in such a way that
the units built could be incorporated almost directly into the final form
of the machine, thus saving duplication. This proposal was rejected.

The writer has learned that the Bureau of Reclamation®* has been
obtaining solutions to Laplace's equation by computer solution, though
this has been relatively expensive. * This seems to be a likely prospect
and will be pursued further. In addition, other governmental agencies
including NASA will be considered for proposals.

* Conversation with Edward T. Wall, Bureau of Reclamation.



6. RESULTS

The circuit diagrams have been completed for the random walk
machine utilizing the Fairchild CTuL-952 through 957 line of logic. If
later developments in integrated circuitry make another line more
suitable, the transformation can be made relatively easily since 1l: the
majority of the machine is the flip-flop circular shift registers in which
almost every bit is identical. And 2: the transformation between AND's
followed by OR's is made readily into NAND's followed by NAND's or
NOR's followed by NOR's.

The machine cost estimate has been made on the basis of the
logic units required. This has been given before as $38,000. This
figure may drop as suitable multibit integrated circuits become
available.

The control procedure has been outlined and is estimated at
taking an average of 66 and a maximum of 82us to process the output
of the RW machine at the end of each random step. This fits very
comfortably within the average time per random walk of 378us. The
GE/PAC 4020 should be able to spend 82% of its time shared with other
programs.

Parallel work in the way of graduate student research is being
started in the development of random bit generators and a random bit
checker. This will be based on the work of Golomb, > Hampton®* and
Murry. ' These units will be necessary for the random walk machine
which must have a generator for its source of random bits and a
checker to assure the quality of the random bits.

10
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CIRCUIT DIAGRAMS

The circuit diagrams are given in the same order as the logic
diagrams in Appendix B. That is, Figure A. 3a is the circuit diagram
corresponding to logic diagram B. 3a and both bear the same title,
Clock and Phase Control. An index of the circuit diagrams follows.

INDEX OF THE CIRCUIT DIAGRAMS

Figure Title Page
A.1 State Diagram of Random Walk Machine Operation. . . 13
A.2 Block Diagram of Random Walk Machine with Data Paths. 14
A.3a Clock and Phase Controt . . . . . . . . . . 15
A.3b Random Step Control . . . . . . . . . . . 16
A. 3¢ Imitialization Control . . . . . . . . . . . 17
A.3d Loading Control . . . . . . . . . . . . . 18
A.3e Upper Memory Control. . . . . . . . . . . 19
A.4 Random Step Source e e e e e ... .. 20
A.5a Y Counter. . . . . . . . .+ .« < . . . 2
A.5b X Counter. . . . . . .« .« .« . . < . .. 22
A.5¢ YMX Counter. . . . . . . . .« .+ . . . . 23
A.5d YPX Counter . . . . . . .« . . . . . . . 24
A.6 Upper and Lower Selector . . . . . . . . . . 25
A.7a Upper Comparator . . . . . . . . . . . . 26
A.7b Lower Comparator . . . . . . .« . . . . .27
A.8 Upper Memory (First Ring) . . . . . . . . . 28
A.9 Output Buffer. . . . . . . . . . . . . .29
A.10 Initialization Comparator . . . . . . . . . . 30
A. 11 Initial Position Register . . . . . . . . . . 31
A.12 Input Buffer . . .. . . . . . . . . . . 32
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Notes

1. The majority of machine operation is in the random walking
section, particularly in states A, B, and C.

2. State F starts initialization for the next random walk if there
are further walks to make (the usual situation),

3. State N starts the loading; external control can specify the Load

Walk Counter (LWC) which is state R, Load Initial Position
(LIP) which is state Q, or Load Memory (LMM) which is state
P. At the conclusion of loading the process goes to walk
initialization before the random walking starts.

Figure A.1. State Diagram of Random Walk Machine Operation
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Figure A.7b. Lower Comparator
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Figure A.9. Output Buffer
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The logic diagrams from the author's thesis are here given.

Title

State Diagram of Control

Block Diagram of Random Walk Machlne w1th Data. Paths

Clock and Phase Control
Random Step Control
Initialization Control
Loading Control . .
Upper Memory Control .

Random Step Source .
Counters

Upper Selector
Upper Comparator

Upper Memory Block D1agram

Output Buffer.

Y Initialization Comparator
Initial Position Register
Input Buffer
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L MM

Notes:
1. The exits from State N are controlled by
the external control, and are labeled with

the appropriate command from external
control.

2. The process will halt at D if external
control does not sample the contents of
the output buffer and return a POB
(prepare output buffer) signal.

3. The process will halt at P, Q, or R if
the input buffers are not filled and the
signal IBF (input buffer filled) return-
ed by external control.

Figure B. 1., State Diagram of Control
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Random Control
Step Ld
Source Unit
6 7
Upper Upper
5 - “
Select. Comp.
Counters
Y, X,
Y-X,
Y+X 6 7
Lower Lower Lower
b —
Select. Comp.
10 1
Init. Init. Input
- - e
Comp. Buffer
Reg.
9

Buffer

Output Monitoring

Figure B. 2.

Computer

Block Diagram of Random Walk Machine with Data Paths



CLOCK CLK s
® —» Ccp,RS
GO » S
GNG
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?* STP —————————pl R o
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FOB, b —» o | HLT, d
WCZ, b ~——p
H, ¢ —P»
sSc2 S "
¢ RST R I—spC
RC2 PC2
KFI C —-'.
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FOB, b—» RWI
wCz', b ®
FWC, d —p» scl
[ LIS 1} spc1
RSA, b —®___ | 1
P
RC1
KF, c —9 | —® R O}—pPCl’
?—— RST ——————
CcP CP —»
PC2' ® —»Pl,b PC2 —» @ —»P3,c
PCl' PCl'
CP —» CP —p
PC2'—p @ —» P2, C PC2 ® —»P4,d
PCl —p» PCl ::_

’

From
External
Control

Figure B. 3a.

Clock and Phase Control
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From r
External ‘WIl-14,1'-14'"

Control From Input

— A, RS

—® C, UC, LC

'BLie

Pl, a—’[_‘
Cc— DL' o
RST— 4+ FAG s 1 AC
RSA Ac
A .
R O AC___ 5
UMA, e—P Pl,a—® @
IJMR' e——.
LMA, e~
LMR, e—
Ucp—
I: LCP —»
s 1}
B SDL DL
DL
FOB RDL . o DL' Pl, a——p
®—— RST DL —»
RSA— Ac—p b
2 ols 1l »
EW :
RSA— - EW' —a |
®—1— RST— EW'
g L
FOB— REW
EW
RSA —» Pl,a ®
SOB |
I::T—-RST—-" s 1
OBR
L POB—
FOB OBO
R
WCZ ' —po o
*— —

From

*Comp-
arators

RSW

ucp :j |
F -

LCP

Buffer

Figure B. 3b.

FOB, a, OB, XC

—— RSA, a, ¢

Random Step Control

WCZ',a

WCZ, a
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F
H —pl rur| FH
RST > + R
RSA,b ——p»f

F rtm

Ext.
Control

Figure B. 3c.
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3 ! €

—8FH P2, a —f |
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FH —pm
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—® H,a, e
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—— 1, b

P3, 3 =——pn
XEQ
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Initialization Control
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BL, b

UMA, b, ca—

UMR, b a—

NX, RS»

: DX, RS

UPU',

UPU, c,d =

UL1-4 USR USL UR1-4
1'-4' 1'-4)
\W__J ;W_J
- Upper Upper
Memory Memory

Note: Lower memory control is identical. Replace every init-
ial "U" in a signal designation with "L".

Figure B.3e. Upper Memory Control
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Random

. CpP
Bit % From
Source Control
2 Bit Riqg Shift ngiIter
B2 1 B
From
Control
1 B2 Bl' B 'B£ B2'
o o o
RNX RNY
4K From
¢ J Control
' vy
+ +
->NX To
I $px Control
QNX DX NY

To Counters

Figure B. 4.

Random Step Source
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From
Random
Step From
Control
D:*T* F,Cc
7 i
Y
® L 7 Yl-vY7
bit To Selectors
¢ icntr.
0—‘ X
bit To Selectors
# —picntr.
Z
> YMX
+
:|+ > 8 sssssssm)  VM1-YM8
L 4 - NYM| bit To Selectors
cntr.
LT
Z
YPX
+
YP1-YPS8
+ | 1 & ————

L

T

?;Il
S

X1i-7, Y1-7,

1|_7| 1'=-7"

To Init. Comp.
and Output Buffer

Figure B. 5. Counters



X1-7,
Y1l-7,
YM1-8,
YP1-8
From
Cntrs.

uce, )
UDS8 r+']:-.U88
YM8 YP8
I (> use
sorw®] veral®
UA7 GB7 + us7
uc?7
r D7
i E < C iy o) Ry v D R L il
® ® ° ]
To
}Up.
Comp .
o [ ) o [ ]
L ] o ®
AL - + <
Cl .
UD
Y1+ X1 YM1 — YP1— 1
° ° ° ° I st
?-:l_ b
~ UYP
® ® ® ®
[) f I L
% UN2
< UN2' From
@~ < UN1 Upper
< UN1"' Memory
Figure B.6. Upper Selector



US8 —» Q Us8
ums ] @ UE8 UM8 '
Uss" o +
UM?' . - o7 UES —
UsS7 —pf —
w e UE7 US7.
| e UM7
us7'
um7’ —o @ [ UES —)
UE7
® [ Use6 ~—

UES — E86UM6
UE7 > @ >

UE6 ~™ UES6 —

° ° Uss —
B2 > e —IE: e

UE3 UES6—

o . UE5 —®

US4 —»

UM4 ' —p»

UE2 —9» UE21

UEl - @ [ ™

UEB6
Usl PY UES
UMl + _Uil UE4
Usl' - ° ! Us3
UM1' —P» ‘ UM3'
Ug;g{’l __’Ui%_g'- UE86
Select. UE53
Note: The lower bound- Us2
ary comparator is M2’
identical to the up-
per except that for UES6
the AND's whose out- UES3

puts are UGl through UE2
UG8, the inputs from Usl
the selector and from yyj°
memory (the US's and

UG3

UG2
—2L]

UGl

the UM's) are replaced

P
by their complements. UEB6

UES53—9™

UE

iillfl[fi
'

UG8
UG7
ugée
From
Control
(o4
To
uGs Control
UCP

o

11 let
A etters U (upper) UE21

are replaced by L
(lower) and G (great-
er) by W (less or
fewer).

UM1-8,
1'-8"

From
«4—pper
Memory

Figure B.7. Upper Comparator
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From
Control
o © 0 o USL, USR

14 parallel,

32~-bit, circular 4
shift registers J
To To
Control Control
N ULl-4,1'-4" UR1-4,1'-4"
/

To Selector ce
UN1,2,1',2' From In. Buffer

UIl-14,1'-14"'
USR, Ce :
USsL, Ce

Note: The lower memory is identical to the upper

memory. Replace the letter "U" by "L" on signal
designations.

To Comparator
UM1-8,1'-8"

Figure B.8. Upper Memory Block Diagram



From
Control
OBF

Y

YB1-7,1'-7"
Y1-7,1'-7" Y
From Output
Counters Buffer

XBl1-7,1'-7"'
X1-7,1'-7" f///’ X

From o Output
Buffer

Counters

X01l-7 YOl-7
\_1|_7| 1I_'7Jl
Y
To
Monitoring

Computer

Figure B.9. Output Buffer



Y1l-7,1'=-7"
From
Counters

To Control
AL

Y7
1v7_| @ X7
YE7
Y7;J_—_— +
Iy7'| @
Y17'
Y6
> YI6
ive | @
+ YEG6
Y6'
>
| @
Yi6'
Similar Stages numbered

from 2 to 5.

YIl + YE1

Yl [
1Yl
Y1l'

>
vie] @

Note: The X initialization counter is identical.

Y with X.

Figure B. 10,

Y Initialization Comparator

h)
%fo' YEQ
1
)
1Y1-7,1'-7"

From Initial

Position Regqg.

Replace
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To

Init.
Comp.

To

Init.
Comp.

-~

Figure B.11.

IY7 41 s

TB14

IY7'®e—0 R

IP14

IrPl4'

IYl] ’«—{1 s
IB8
Ivl® 0 R

lg¢—1P8

¢— IP8'

IX7 ®—1 s

IB?

IX7'*—P R

§— IP7

<4— 1P7'

IX1 €—

IXl '@

1l s
IB1
0 R

l4— TP

<¢— IP1'

>

Initial Position Register

From

FInput

Buffer
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IPl-14
1'-14"
To
Initial
Position
Register

To To
Lower Upper To
Memory Memory Control

AT 6ToTD AT
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From
Control

' N\

1-14" 1'-14"' 1'-14" FIP FWC FUM FLM
IB14 IN1-14,
l [ ] _14 ]

thru |<{@m From

Ext.
1'-14" | 1p1 Control

Figure B. 12. Input Buffer



